

Playing (Almost-)Optimally in Concurrent Büchi and co-Büchi Games

Benjamin Bordais, Patricia Bouyer, Stéphane Le Roux

Laboratoire Méthodes Formelles Université Paris-Saclay, CNRS, ENS Paris-Saclay France

Context

- Two-player games on graphs as a tool for formal verification (e.g. controller synthesis)
- Win/lose games: the objectives of the two players are opposite
- **Concurrent games**, as opposed to turn-based games

Player A chooses a row

- Player A chooses a row
- Player B chooses a column

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state

- Player A chooses a row
- > Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$
- Outcome of σ_A : infinite path compatible with σ_A

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$
- Outcome of σ_A : infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^{\omega}$

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$
- Outcome of σ_A : infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^{\omega}$
- Objective for Player B: W^c

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$
- Outcome of σ_A : infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^{\omega}$
- Objective for Player B: W^c
- Winning strategy σ_{A} : all outcomes of σ_{A} belong to W

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$
- Outcome of σ_A : infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^{\omega}$
- Objective for Player B: W^c
- Winning strategy σ_{A} : all outcomes of σ_{A} belong to W
- There is no winning strategy, for either of the players

- Player A chooses a row
- Player B chooses a column
- The game proceeds to the corresponding state
- Strategy for player A: $\sigma_A: Q^+ \to row$
- Outcome of σ_A : infinite path compatible with σ_A
- Objective for Player A: $W \subseteq Q^{\omega}$
- Objective for Player B: W^c
- Winning strategy σ_{A} : all outcomes of σ_{A} belong to W
- There is no winning strategy, for either of the players

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for A: σ_A that maximizes $\inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W)$

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_{B} that minimizes $\sup_{\sigma_{A},\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_{B} that minimizes $\sup_{\sigma_{A},\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$
- ε -optimal strategy for A: σ_A that achieves $\sup \inf_{\sigma'_A, \sigma_B} \mathbb{P}_{\sigma'_A, \sigma_B}(W)$ up to ε

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_{B} that minimizes $\sup_{\sigma_{A},\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$
- ε -optimal strategy for A: σ_A that achieves $\sup \inf_{\sigma'_A, \sigma_B} \mathbb{P}_{\sigma'_A, \sigma_B}(W)$ up to ε
- There are optimal strategies for both players:

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_{B} that minimizes $\sup_{\sigma_{A},\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$
- ε -optimal strategy for A: σ_A that achieves $\sup \inf_{\sigma'_A, \sigma_B} \mathbb{P}_{\sigma'_A, \sigma_B}(W)$ up to ε
- There are optimal strategies for both players:
 - Player A: chooses uniformly at random a row

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_{B} that minimizes $\sup_{\sigma_{A},\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$
- ε -optimal strategy for A: σ_A that achieves $\sup_{\sigma'_A} \inf_{\sigma_B} \mathbb{P}_{\sigma'_A,\sigma_B}(W)$ up to ε
- There are optimal strategies for both players:
 - Player A: chooses uniformly at random a row
 - Player B: chooses uniformly at random a column

- Need for **randomization**!
- Randomized strategy: choose rows/columns according to a distribution
- Given randomized strategies σ_A and σ_B , the **payoff** (for A) is the probability $\mathbb{P}_{\sigma_A,\sigma_B}(W)$
- Optimal strategy for B σ_{B} that minimizes $\sup_{\sigma_{A},\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$
- ε -optimal strategy for A: σ_A that achieves $\sup \inf_{\sigma'_A, \sigma_B} \mathbb{P}_{\sigma'_A, \sigma_B}(W)$ up to ε
- There are optimal strategies for both players:
 - Player A: chooses uniformly at random a row
 - Player B: chooses uniformly at random a column

Martin's determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values:

$$v(q) = \sup_{\sigma_{A}} \inf_{\sigma_{B}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W) = \inf_{\sigma_{B}} \sup_{\sigma_{A}} \mathbb{P}_{\sigma_{A},\sigma_{B}}(W)$$

Martin's determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values: $v(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$

Optimal strategies might not exist in general (except for safety objectives)

Martin's determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values: $v(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$

- Optimal strategies might not exist in general (except for safety objectives)
- (Infinite) Memory is sometimes needed by optimal and almost-optimal strategies
 - Parity games require infinite memory for both optimal and almost-optimal strategies

Martin's determinacy theorem for Blackwell games

Concurrent games with Borel objectives have values: $v(q) = \sup_{\sigma_A} \inf_{\sigma_B} \mathbb{P}_{\sigma_A,\sigma_B}(W) = \inf_{\sigma_B} \sup_{\sigma_A} \mathbb{P}_{\sigma_A,\sigma_B}(W)$

- Optimal strategies might not exist in general (except for safety objectives)
- (Infinite) Memory is sometimes needed by optimal and almost-optimal strategies
 - Parity games require infinite memory for both optimal and almost-optimal strategies
- Note: this is specific to concurrent games! (as compared to turn-based)

« The snowball game »

[AH00] L. De Alfaro, T. Henzinger. Concurrent omega-regular games (LICS'00)

Objective is to visit T infinitely often

- Objective is to visit T infinitely often
- Value of the game is 1

- ► Objective is to visit T infinitely often
- Value of the game is 1
- Player A (rows) has no optimal strat.

- Objective is to visit T infinitely often
- Value of the game is 1
- Player A (rows) has no optimal strat.
- $\blacktriangleright \quad \text{Every finite-memory strat. has value } 0$

[«] The snowball game »

- ► Objective is to visit T infinitely often
- $\bullet \quad \text{Value of the game is } 1$
- Player A (rows) has no optimal strat.
- Every finite-memory strat. has value 0
- Player A needs infinite memory to play ε -optimal for every $\varepsilon > 0$:
 - Play first row with probability $1 \varepsilon_k$ and second row with probability ε_k
 - k is the number of visits to op
 - $(\varepsilon_k)_k$ quickly decreases to 0

 We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives

- We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives
- Low memory requirement = positional strategies

- We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives
- Low memory requirement = positional strategies
- $\sigma_{\rm A}$ is positional if it depends only on the last visited state
The approach of this work

- We are interested in **low memory requirements** for optimal and almost-optimal strategies in concurrent games with parity objectives in general, and more specifically Büchi and co-Büchi objectives
- Low memory requirement = positional strategies
- $\sigma_{\rm A}$ is positional if it depends only on the last visited state

Our approach: focus on interactions, and characterize well-behaved interactions

Game form

 $\begin{bmatrix} x & y \\ y & z \end{bmatrix}$

Elementary brick

Elementary brick

Game form

 $\begin{bmatrix} x & y \\ y & z \end{bmatrix}$

Games on graphs with good properties

Game forms with good properties

 $\bullet \ \ \, {\cal S} \ {\rm set} \ {\rm of} \ {\rm game \ forms}$

- \mathcal{I} set of game forms
- Identify properties of \mathscr{I} so that all concurrent games built using game forms \mathscr{I} behave well

- \mathcal{I} set of game forms
- Identify properties of \mathscr{I} so that all concurrent games built using game forms \mathscr{I} behave well

- $\bullet~{\mathscr I}$ set of game forms
- Identify properties of \mathscr{I} so that all concurrent games built using game forms \mathscr{I} behave well

- $\bullet~{\mathscr I}$ set of game forms
- Identify properties of \mathscr{S} so that all concurrent games built using game forms \mathscr{S} behave well

Behave well = positional (almost-)optimal strategies are sufficient

- \mathscr{I} set of game forms
- Identify properties of \mathscr{S} so that all concurrent games built using game forms \mathscr{S} behave well

Previous works with a similar methodology

Previous works with a similar methodology

- Determinacy of deterministic games [BBL21]
 - The matching-penny is not a good game form
 - Local determinacy condition on game forms

Previous works with a similar methodology

- Determinacy of deterministic games [BBL21]
 - The matching-penny is not a good game form
 - Local determinacy condition on game forms
- Reachability objectives [BBL22]
 - Optimal and almost-optimal strategies can be chosen positional (when they exist)
 - Local condition (called RM) on game forms to ensure existence (and therefore positionality) of optimal strategies everywhere

• One can associate to each state q of the game its value v(q), and these values satisfy local optimality equations

• One can associate to each state q of the game its value v(q), and these values satisfy local optimality equations

• One can associate to each state q of the game its value v(q), and these values satisfy local optimality equations

Game in normal form

$$\begin{bmatrix} 1/2 & 1/4 \\ 1/2 & 3/4 \end{bmatrix}$$

• One can associate to each state q of the game its value v(q), and these values satisfy local optimality equations

Both players have (local) optimal strategies in this game in normal form

• One can associate to each state q of the game its value v(q), and these values satisfy local optimality equations

- Both players have (local) optimal strategies in this game in normal form
- All globally optimal strategies (in the graph) are locally optimal

• One can associate to each state q of the game its value v(q), and these values satisfy local optimality equations

- Both players have (local) optimal strategies in this game in normal form
- All globally optimal strategies (in the graph) are locally optimal
- Locally optimal strategies may not be globally optimal (in the graph)

• Locally optimal strategy σ_A :

- Locally optimal strategy σ_A :
 - Player A chooses the first row

- Locally optimal strategy σ_A :
 - Player A chooses the first row
- This is obviously not globally optimal

- Locally optimal strategy σ_A :
 - Player A chooses the first row
- This is obviously not globally optimal
- What is wrong?

- Locally optimal strategy σ_A :
 - Player A chooses the first row
- This is obviously not globally optimal
- What is wrong?
 - In the MDP generated by $\sigma_{\rm A},$ there is an end-component which is losing

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist from all states, they can be chosen positional (inherited from reachability games)
- Almost-optimal strategies may require infinite memory (known)
- Characterization of nice game forms (aBM) for ensuring:
 - Positional almost-optimal strategies

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist from all states, they can be chosen positional (inherited from reachability games)
- Almost-optimal strategies may require infinite memory (known)
- Characterization of nice game forms (aBM) for ensuring:
 - Positional almost-optimal strategies

co-Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist, they may require infinite memory
- Almost-optimal strategies can be chosen positional (known [CDAH06])
- Characterization of nice game forms (coBM) for ensuring:
 - Positional optimal strategies

Characterize positional (almost-)optimal strategies using locally (almost-)optimal strategies (applies to tail objectives)

Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist from all states, they can be chosen positional (inherited from reachability games)
- Almost-optimal strategies may require infinite memory (known)
- Characterization of nice game forms (aBM) for ensuring:
 - Positional almost-optimal strategies

co-Büchi objectives

- Optimal strategies may not exist (known)
- When optimal strategies exist, they may require infinite memory
- Almost-optimal strategies can be chosen positional (known [CDAH06])
- Characterization of nice game forms (coBM) for ensuring:
 - Positional optimal strategies

From bricks to nice constructions

• Recall: there exist Büchi games where infinite memory is required to play arepsilon-optimally

From bricks to nice constructions

• Recall: there exist Büchi games where infinite memory is required to play ϵ -optimally

How should we restrict interactions to avoid this phenomenon?
From bricks to nice constructions

• Recall: there exist Büchi games where infinite memory is required to play ϵ -optimally

How should we restrict interactions to avoid this phenomenon?

$$\mathscr{F} = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$$

From bricks to nice constructions

• Recall: there exist Büchi games where infinite memory is required to play arepsilon-optimally

How should we restrict interactions to avoid this phenomenon?

 $\begin{bmatrix} x & y \\ y & z \end{bmatrix}$

Characterization

Definition of aBM (almost-Büchi maximizable)

• A game form \mathscr{F} is aBM whenever every embedding of \mathscr{F} into a local environment admits a positional ε -optimal strategy for every $\varepsilon > 0$.

Characterization

Definition of aBM (almost-Büchi maximizable)

- A game form \mathscr{F} is aBM whenever every embedding of \mathscr{F} into a local environment admits a positional ε -optimal strategy for every $\varepsilon > 0$.
- An aBM game form can be characterized and decided (it can be encoded as a formula of the first-order theory of the reals)

Characterization

Definition of aBM (almost-Büchi maximizable)

- A game form \mathscr{F} is aBM whenever every embedding of \mathscr{F} into a local environment admits a positional ε -optimal strategy for every $\varepsilon > 0$.
- An aBM game form can be characterized and decided (it can be encoded as a formula of the first-order theory of the reals)

Characterization

- If all game forms used in a concurrent game \mathscr{G} are aBM, then \mathscr{G} admits positional ε -optimal strategies for every $\varepsilon > 0$
- If a game form is not aBM, then there is a concurrent game which does not admit a positional ϵ -optimal strategy for some $\epsilon > 0$.

	Positional opt. strat.		Positional almost-opt. strat.	
	Target	Not target	Target	Not target
Safety obj.	No restr.	No restr.	No restr.	No restr.
Reach. obj.	No restr.	RM	No restr.	No restr.
Büchi obj.	No restr.	RM	No restr.	aBM
co-Büchi obj.	RM	coBM	No restr.	No restr.

Existence of positional optimal or ϵ -optimal strategies under the following restrictions on game forms:

	Positional opt. strat.		Positional almost-opt. strat.	
	Target	Not target	Target	Not target
Safety obj.	No restr.	No restr.	No restr.	No restr.
Reach. obj.	No restr.	RM	No restr.	No restr.
Büchi obj. 🏑	No restr.	RM	No restr.	aBM
co-Büchi oy,	RM	coBM	No restr.	No restr.

If game forms satisfy the properties below, then positional strategies exist and can be chosen positional

Existence of positional optimal or ϵ -optimal strategies under the following restrictions on game forms:

	Positional opt. strat.		Positional almost-opt. strat.	
	Target	Not target	Target	Not target
Safety obj.	No restr.	No restr.	No restr.	No restr.
Reach. obj.	No restr.	RM	No restr.	No restr.
Büchi obj. 🏑	No restr	RM	No restr.	aBM
co-Büchi oy,	RM	соВМ	No restr.	No restr.
and the second sec		and the second se		

If game forms satisfy the properties below, then positional strategies exist and can be chosen positional

If game forms at states not in target are coBM and in targets are RM, then optimal strategies exist and can be chosen positional

	Positional opt. strat.		Positional almost-opt. strat.	
	Target	Not target	Target	Not target
Safety obj.	No restr.	No restr.	No restr.	No restr.
Reach. obj.	No restr.	RM	No restr.	No restr.
Büchi obj.	No restr.	RM	No restr.	aBM
co-Büchi obj.	RM	coBM	No restr.	No restr.

• All these notions RM, coBM, aBM, ... can be decided (can be expressed in $FO(\mathbb{R})$)

- All these notions RM, coBM, aBM, ... can be decided (can be expressed in $FO(\mathbb{R})$)
- $coBM \subseteq RM \subseteq aBM$

- All these notions RM, coBM, aBM, ... can be decided (can be expressed in $FO(\mathbb{R})$)
- $coBM \subseteq RM \subseteq aBM$
- These game forms are coBM:
 - « Turn-based » game forms:
 - Two-variable game forms:

$$\begin{bmatrix} x & y & z \\ x & y & z \end{bmatrix}$$

$$\begin{bmatrix} x & y & x \\ y & x & x \end{bmatrix}$$

• Permutation game forms:

$$\begin{bmatrix} x & y & z \\ z & x & y \\ y & z & x \end{bmatrix}$$

- **Concurrent games** behave much less smoothly that turn-based games
 - Optimal strategies might not exist
 - (Almost-)Optimal strategies might require infinite memory

- **Concurrent games** behave much less smoothly that turn-based games
 - Optimal strategies might not exist
 - (Almost-)Optimal strategies might require infinite memory
- Methodology:

- ۴
- Study interactions (**game forms**) as first-class citizens
- Identify interactions (game forms) that are well-behaved (with a property in mind)
- Show that, all games on graphs with interactions taken in the set of wellbehaved game forms behave well; and that this set is maximal

- Concurrent games behave much less smoothly that turn-based games
 - Optimal strategies might not exist
 - (Almost-)Optimal strategies might require infinite memory
- Methodology:
 - Study interactions (game forms) as first-class citizens
 - Identify interactions (game forms) that are well-behaved (with a property in mind)
 - Show that, all games on graphs with interactions taken in the set of wellbehaved game forms behave well; and that this set is maximal
- Going further:
 - Understand beyond (co-)Büchi conditions, e.g. parity conditions
 - (Ongoing work) A different approach, which should be able to deal with parity conditions

