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‣ Two-player games on graphs as a tool for formal verification 
(e.g. controller synthesis) 

‣ Win/lose games: the objectives of the two players are opposite 

‣ Concurrent games, as opposed to turn-based games

Context
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turn-based games
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‣ Optimal strategies might not exist in general (except for safety objectives)

‣ (Infinite) Memory is sometimes needed by optimal and almost-optimal strategies 

• Parity games require infinite memory for both optimal and almost-optimal strategies

‣ Note: this is specific to concurrent games! 
           (as compared to turn-based)
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An example of a Büchi game
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⊥

‣ Objective is to visit  infinitely often⊤

‣ Value of the game is 1

‣ Player A (rows) has no optimal strat.

‣ Every finite-memory strat. has value 0

‣ Player A needs infinite memory to play 
-optimal for every : 

- Play first row with probability  and 
second row with probability  

-  is the number of visits to  

-  quickly decreases to 

ε
ε > 0

1 − εk
εk

k ⊤
(εk)k 0
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‣ We are interested in low memory requirements for optimal and 
almost-optimal strategies in concurrent games with parity objectives in 
general, and more specifically Büchi and co-Büchi objectives

‣ Low memory requirement = positional strategies

‣  is positional if it depends only on the last visited stateσA

The approach of this work

Our approach: focus on interactions, and 
characterize well-behaved interactions
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‣  set of game formsℐ

‣ Identify properties of  so that all 
concurrent games built using game 
forms  behave well

ℐ

ℐ

Approach in this work

Behave well = positional 
(almost-)optimal strategies 

are sufficient

(Co-)Büchi 
conditions
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‣ Determinacy of deterministic games [BBL21] 
• The matching-penny is not a good game form 
• Local determinacy condition on game forms

‣ Reachability objectives [BBL22] 
• Optimal and almost-optimal strategies can be chosen positional 

(when they exist) 
• Local condition (called RM) on game forms to ensure existence 

(and therefore positionality) of optimal strategies everywhere

Previous works with a 
similar methodology

[BBL21] Bordais, Bouyer, Le Roux. From local to global determinacy in concurrent graph games (FSTTCS’21) 
[BBL22] Bordais, Bouyer, Le Roux. Optimal Strategies in Concurrent Reachability Games (CSL’22)
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Example

q0, [ q0 ⊤
⊤ ⊥ ]

⊤

⊥1

1

0 ‣ Locally optimal strategy :σA
• Player A chooses the first row

‣ This is obviously not globally optimal

‣ What is wrong?

• In the MDP generated by , 
there is an end-component which 
is losing

σA
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Focus on Büchi conditions

[x y
y z] Several local 

« environments »

[T 1
1 0] T1
1 0
T

⋯

T

[T T
T 0]

T

T
T
T

0

Target

Not target

‣  set of variables (  in the example) 
‣ One small game 

• for every , 

• for every , and 

• for every 

O {x, y, z}

E ⊆ O
pT : E → [0,1]
α : O∖E → [0,1]

Local environment

pT

E

Payoff if the game proceeds to here
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‣A game form  is aBM whenever every embedding of  into a local 
environment admits a positional -optimal strategy for every .
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Characterization

Characterization

‣ If all game forms used in a concurrent game  are aBM, then  admits 
positional -optimal strategies for every  

‣ If a game form is not aBM, then there is a concurrent game which does 
not admit a positional -optimal strategy for some .

𝒢 𝒢
ε ε > 0

ε ε > 0

Definition of aBM (almost-Büchi maximizable)

‣A game form  is aBM whenever every embedding of  into a local 
environment admits a positional -optimal strategy for every .

ℱ ℱ
ε ε > 0

‣ An aBM game form can be characterized and decided (it can be encoded as 
a formula of the first-order theory of the reals)
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How to ensure positional 
(almost-)optimal strategies?

Positional opt. strat. Positional almost-opt. strat.
Target Not target Target Not target

Safety obj. No restr. No restr. No restr. No restr.
Reach. obj. No restr. RM No restr. No restr.
Büchi obj. No restr. RM No restr. aBM

co-Büchi obj. RM coBM No restr. No restr.

Existence of positional optimal or -optimal strategies under the 
following restrictions on game forms:

ε
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How to ensure positional 
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Positional opt. strat. Positional almost-opt. strat.
Target Not target Target Not target

Safety obj. No restr. No restr. No restr. No restr.
Reach. obj. No restr. RM No restr. No restr.
Büchi obj. No restr. RM No restr. aBM

co-Büchi obj. RM coBM No restr. No restr.

Existence of positional optimal or -optimal strategies under the 
following restrictions on game forms:

ε

-optimal strategies 
can always be 

chosen positional

ε
If game forms at states not in 

target are aBM then 
-optimal strategies can be 

chosen positional
ε

If game forms satisfy the 
properties below, then 

positional strategies exist and 
can be chosen positional

If game forms at states not in 
target are coBM and in 

targets are RM, then optimal 
strategies exist and can be 

chosen positional



17

How to ensure positional 
(almost-)optimal strategies?

Positional opt. strat. Positional almost-opt. strat.
Target Not target Target Not target

Safety obj. No restr. No restr. No restr. No restr.
Reach. obj. No restr. RM No restr. No restr.
Büchi obj. No restr. RM No restr. aBM

co-Büchi obj. RM coBM No restr. No restr.

Existence of positional optimal or -optimal strategies under the 
following restrictions on game forms:

ε



18

Properties of  game forms



18

‣ All these notions RM, coBM, aBM, … can be decided (can be expressed in )FO(ℝ)

Properties of  game forms



18

‣ All these notions RM, coBM, aBM, … can be decided (can be expressed in )FO(ℝ)

‣ coBM  RM  aBM⊆ ⊆

Properties of  game forms



18

‣ All these notions RM, coBM, aBM, … can be decided (can be expressed in )FO(ℝ)

‣ coBM  RM  aBM⊆ ⊆

‣ These game forms are coBM: 
• « Turn-based » game forms: 

 

• Two-variable game forms: 

 

• Permutation game forms: 

[x y z
x y z]

[x y x
y x x]

[
x y z
z x y
y z x]

Properties of  game forms



19

What you can bring home



19

‣ Concurrent games behave much less smoothly that turn-based games 
• Optimal strategies might not exist 
• (Almost-)Optimal strategies might require infinite memory
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‣ Concurrent games behave much less smoothly that turn-based games 
• Optimal strategies might not exist 
• (Almost-)Optimal strategies might require infinite memory

‣ Methodology: 
• Study interactions (game forms) as first-class citizens 
• Identify interactions (game forms) that are well-behaved (with a property 

in mind) 
• Show that, all games on graphs with interactions taken in the set of well-

behaved game forms behave well; and that this set is maximal

‣ Going further: 
• Understand beyond (co-)Büchi conditions, e.g. parity conditions 
• (Ongoing work) A different approach, which should be able to deal with 

parity conditions

What you can bring home


